module Data.SegTree.Primal where
import Control.Monad
import Control.Monad.Primitive
import Data.Bits
import Data.Function
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as GM
import Unsafe.Coerce
newtype SegTree mv s a = SegTree {forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree :: mv s a}
newSegTree ::
(Monoid a, GM.MVector mv a, PrimMonad m) =>
Int ->
m (SegTree mv (PrimState m) a)
newSegTree :: forall a (mv :: * -> * -> *) (m :: * -> *).
(Monoid a, MVector mv a, PrimMonad m) =>
Int -> m (SegTree mv (PrimState m) a)
newSegTree Int
n = mv (PrimState m) a -> SegTree mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
mv s a -> SegTree mv s a
SegTree (mv (PrimState m) a -> SegTree mv (PrimState m) a)
-> m (mv (PrimState m) a) -> m (SegTree mv (PrimState m) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> m (mv (PrimState m) a)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> a -> m (v (PrimState m) a)
GM.replicate (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int -> Int
extendToPowerOfTwo Int
n) a
forall a. Monoid a => a
mempty
buildSegTree ::
(Monoid a, PrimMonad m, G.Vector v a) =>
v a ->
m (SegTree (G.Mutable v) (PrimState m) a)
buildSegTree :: forall a (m :: * -> *) (v :: * -> *).
(Monoid a, PrimMonad m, Vector v a) =>
v a -> m (SegTree (Mutable v) (PrimState m) a)
buildSegTree v a
vec = do
let n :: Int
n = Int -> Int
extendToPowerOfTwo (Int -> Int) -> Int -> Int
forall a b. (a -> b) -> a -> b
$ v a -> Int
forall (v :: * -> *) a. Vector v a => v a -> Int
G.length v a
vec
tree <- Int -> a -> m (Mutable v (PrimState m) a)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> a -> m (v (PrimState m) a)
GM.replicate (Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
n) a
forall a. Monoid a => a
mempty
G.unsafeCopy (GM.unsafeSlice n (G.length vec) tree) vec
flip fix (n - 1) $ \Int -> m ()
loop !Int
i -> Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
1) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
a -> a -> a
forall a. Monoid a => a -> a -> a
mappend
(a -> a -> a) -> m a -> m (a -> a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Mutable v (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead Mutable v (PrimState m) a
tree (Int
i Int -> Int -> Int
forall a. Bits a => a -> Int -> a
!<<. Int
1)
m (a -> a) -> m a -> m a
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Mutable v (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead Mutable v (PrimState m) a
tree ((Int
i Int -> Int -> Int
forall a. Bits a => a -> Int -> a
!<<. Int
1) Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int
1)
m a -> (a -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Mutable v (PrimState m) a -> Int -> a -> m ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
GM.unsafeWrite Mutable v (PrimState m) a
tree Int
i
Int -> m ()
loop (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
return $ SegTree tree
readSegTree ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
m a
readSegTree :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> m a
readSegTree SegTree mv (PrimState m) a
segtree Int
k = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree
let n :: Int
n = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (mv (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
GM.length mv (PrimState m) a
tree) Int
1
mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree (Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
{-# INLINE readSegTree #-}
pullSegTree ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
m ()
pullSegTree :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> m ()
pullSegTree SegTree mv (PrimState m) a
seg Int
k = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
seg
a -> a -> a
forall a. Monoid a => a -> a -> a
mappend
(a -> a -> a) -> m a -> m (a -> a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftL Int
k Int
1)
m (a -> a) -> m a -> m a
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftL Int
k Int
1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int
1)
m a -> (a -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= mv (PrimState m) a -> Int -> a -> m ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
GM.unsafeWrite mv (PrimState m) a
tree Int
k
{-# INLINE pullSegTree #-}
writeSegTree ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
a ->
m ()
writeSegTree :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> a -> m ()
writeSegTree SegTree mv (PrimState m) a
segtree Int
k a
v = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree
let n :: Int
n = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (mv (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
GM.length mv (PrimState m) a
tree) Int
1
mv (PrimState m) a -> Int -> a -> m ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
GM.unsafeWrite mv (PrimState m) a
tree (Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n) a
v
(((Int -> m ()) -> Int -> m ()) -> Int -> m ())
-> Int -> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Int -> m ()) -> Int -> m ()) -> Int -> m ()
forall a. (a -> a) -> a
fix (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n) Int
1) (((Int -> m ()) -> Int -> m ()) -> m ())
-> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int -> m ()
loop !Int
i ->
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
SegTree mv (PrimState m) a -> Int -> m ()
forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> m ()
pullSegTree SegTree mv (PrimState m) a
segtree Int
i
Int -> m ()
loop (Int -> m ()) -> Int -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR Int
i Int
1
{-# INLINE writeSegTree #-}
modifySegTree ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
(a -> a) ->
Int ->
m ()
modifySegTree :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> (a -> a) -> Int -> m ()
modifySegTree SegTree mv (PrimState m) a
segtree a -> a
f Int
k = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree
let n :: Int
n = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (mv (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
GM.length mv (PrimState m) a
tree) Int
1
mv (PrimState m) a -> (a -> a) -> Int -> m ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> (a -> a) -> Int -> m ()
GM.unsafeModify mv (PrimState m) a
tree a -> a
f (Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
(((Int -> m ()) -> Int -> m ()) -> Int -> m ())
-> Int -> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Int -> m ()) -> Int -> m ()) -> Int -> m ()
forall a. (a -> a) -> a
fix (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n) Int
1) (((Int -> m ()) -> Int -> m ()) -> m ())
-> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int -> m ()
loop !Int
i ->
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
SegTree mv (PrimState m) a -> Int -> m ()
forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> m ()
pullSegTree SegTree mv (PrimState m) a
segtree Int
i
Int -> m ()
loop (Int -> m ()) -> Int -> m ()
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR Int
i Int
1
{-# INLINE modifySegTree #-}
mappendFromTo ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
Int ->
m a
mappendFromTo :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> Int -> m a
mappendFromTo SegTree mv (PrimState m) a
segtree Int
l0 Int
r0 = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree
let n :: Int
n = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (mv (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
GM.length mv (PrimState m) a
tree) Int
1
((a -> a -> Int -> Int -> m a) -> a -> a -> Int -> Int -> m a)
-> a -> a -> Int -> Int -> m a
forall a. (a -> a) -> a
fix
( \a -> a -> Int -> Int -> m a
loop !a
accL !a
accR !Int
l !Int
r -> do
if Int
l Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
r
then do
accL' <-
if Int
l Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
then a -> a -> a
forall a. Monoid a => a -> a -> a
mappend a
accL (a -> a) -> m a -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree Int
l
else a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
accL
accR' <-
if r .&. 1 == 1
then flip mappend accR <$> GM.unsafeRead tree (r - 1)
else return accR
loop
accL'
accR'
((l + 1) !>>. 1)
(r !>>. 1)
else a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> m a) -> a -> m a
forall a b. (a -> b) -> a -> b
$! a
accL a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
accR
)
a
forall a. Monoid a => a
mempty
a
forall a. Monoid a => a
mempty
(Int
l0 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
(Int
r0 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
{-# INLINE mappendFromTo #-}
mappendTo ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
m a
mappendTo :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> m a
mappendTo SegTree mv (PrimState m) a
segtree = SegTree mv (PrimState m) a -> Int -> Int -> m a
forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> Int -> m a
mappendFromTo SegTree mv (PrimState m) a
segtree Int
0
{-# INLINE mappendTo #-}
mappendAll ::
(PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
m a
mappendAll :: forall (m :: * -> *) (mv :: * -> * -> *) a.
(PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> m a
mappendAll SegTree mv (PrimState m) a
segtree = mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead (SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree) Int
1
{-# INLINE mappendAll #-}
upperBoundFrom ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
(a -> Bool) ->
m Int
upperBoundFrom :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> (a -> Bool) -> m Int
upperBoundFrom SegTree mv (PrimState m) a
segtree Int
l a -> Bool
p = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree
let !n :: Int
n = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (mv (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
GM.length mv (PrimState m) a
tree) Int
1
violationNode <-
((a -> Int -> m (Maybe (a, Int)))
-> a -> Int -> m (Maybe (a, Int)))
-> a -> Int -> m (Maybe (a, Int))
forall a. (a -> a) -> a
fix
( \a -> Int -> m (Maybe (a, Int))
loopUp !a
acc !Int
cur -> do
let rightParent :: Int
rightParent = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR Int
cur (Int -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Int
cur)
!acc' <- (a
acc a -> a -> a
forall a. Semigroup a => a -> a -> a
<>) (a -> a) -> m a -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree Int
rightParent
if p acc'
then do
let !cur' = Int
rightParent Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
if cur' .&. negate cur' /= cur'
then loopUp acc' cur'
else return Nothing
else return $ Just (acc, rightParent)
)
a
forall a. Monoid a => a
mempty
(Int
l Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
case violationNode of
Maybe (a, Int)
Nothing -> Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
n
Just (!a
acc0, !Int
cur0) -> do
((a -> Int -> m Int) -> a -> Int -> m Int) -> a -> Int -> m Int
forall a. (a -> a) -> a
fix
( \a -> Int -> m Int
loopDown !a
acc !Int
cur -> do
if Int
cur Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
then do
let !leftChild :: Int
leftChild = Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
cur
!acc' <- (a
acc a -> a -> a
forall a. Semigroup a => a -> a -> a
<>) (a -> a) -> m a -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree Int
leftChild
if p acc'
then loopDown acc' (leftChild + 1)
else loopDown acc leftChild
else Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> m Int) -> Int -> m Int
forall a b. (a -> b) -> a -> b
$! Int
cur Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
n
)
a
acc0
Int
cur0
{-# INLINE upperBoundFrom #-}
lowerBoundTo ::
(Monoid a, PrimMonad m, GM.MVector mv a) =>
SegTree mv (PrimState m) a ->
Int ->
(a -> Bool) ->
m Int
lowerBoundTo :: forall a (m :: * -> *) (mv :: * -> * -> *).
(Monoid a, PrimMonad m, MVector mv a) =>
SegTree mv (PrimState m) a -> Int -> (a -> Bool) -> m Int
lowerBoundTo SegTree mv (PrimState m) a
segtree Int
r a -> Bool
p = do
let tree :: mv (PrimState m) a
tree = SegTree mv (PrimState m) a -> mv (PrimState m) a
forall {k} {k} (mv :: k -> k -> *) (s :: k) (a :: k).
SegTree mv s a -> mv s a
getSegTree SegTree mv (PrimState m) a
segtree
let !n :: Int
n = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (mv (PrimState m) a -> Int
forall (v :: * -> * -> *) a s. MVector v a => v s a -> Int
GM.length mv (PrimState m) a
tree) Int
1
violationNode <-
((a -> Int -> m (Maybe (a, Int)))
-> a -> Int -> m (Maybe (a, Int)))
-> a -> Int -> m (Maybe (a, Int))
forall a. (a -> a) -> a
fix
( \a -> Int -> m (Maybe (a, Int))
loopUp !a
acc !Int
cur -> do
let leftParent :: Int
leftParent =
case Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR Int
cur (Int -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Int -> Int
forall a. Bits a => a -> a
complement Int
cur)) of
Int
0 -> Int
1
Int
v -> Int
v
!acc' <- (a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
acc) (a -> a) -> m a -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree Int
leftParent
if p acc'
then do
if leftParent .&. negate leftParent /= leftParent
then loopUp acc' (leftParent - 1)
else return Nothing
else return $ Just (acc, leftParent)
)
a
forall a. Monoid a => a
mempty
(Int
r Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
case violationNode of
Maybe (a, Int)
Nothing -> Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
0
Just (!a
acc0, !Int
cur0) ->
((a -> Int -> m Int) -> a -> Int -> m Int) -> a -> Int -> m Int
forall a. (a -> a) -> a
fix
( \a -> Int -> m Int
loopDown !a
acc !Int
cur -> do
if Int
cur Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
then do
let !rightChild :: Int
rightChild = Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
cur Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
!acc' <- (a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
acc) (a -> a) -> m a -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> mv (PrimState m) a -> Int -> m a
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> m a
GM.unsafeRead mv (PrimState m) a
tree Int
rightChild
if p acc'
then loopDown acc' (rightChild - 1)
else loopDown acc rightChild
else Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> m Int) -> Int -> m Int
forall a b. (a -> b) -> a -> b
$! Int
cur Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
n
)
a
acc0
Int
cur0
{-# INLINE lowerBoundTo #-}
extendToPowerOfTwo :: Int -> Int
extendToPowerOfTwo :: Int -> Int
extendToPowerOfTwo Int
x
| Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1 =
forall a b. a -> b
unsafeCoerce @Word @Int (Word -> Int) -> Word -> Int
forall a b. (a -> b) -> a -> b
$
Word -> Int -> Word
forall a. Bits a => a -> Int -> a
unsafeShiftR (Word -> Word
forall a. Bits a => a -> a
complement Word
forall a. Bits a => a
zeroBits) (Int -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)) Word -> Word -> Word
forall a. Num a => a -> a -> a
+ Word
1
| Bool
otherwise = Int
1