{-# LANGUAGE TypeFamilies #-}

module Data.Lattice where

import Control.Monad
import Control.Monad.Primitive
import Data.Bits
import Data.Coerce
import qualified Data.List as L
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Unboxed.Mutable as UM
import Math.Prime

import My.Prelude (rep, rev)

infix 4 .<.
class Poset a where
  (.<.) :: a -> a -> Bool
  zeta :: (Integral i) => a -> a -> i
  zeta a
x a
y
    | a
x a -> a -> Bool
forall a. Poset a => a -> a -> Bool
.<. a
y = i
1
    | Bool
otherwise = i
0
  moebius :: (Integral i) => a -> a -> i

class Lattice a where
  (/\) :: a -> a -> a
  (\/) :: a -> a -> a

class FastZetaMoebius f where
  type Dim f
  fastZeta ::
    (Num a, U.Unbox a, PrimMonad m) =>
    (Int -> f Int) ->
    Dim f ->
    UM.MVector (PrimState m) a ->
    m ()
  fastMoebius ::
    (Num a, U.Unbox a, PrimMonad m) =>
    (Int -> f Int) ->
    Dim f ->
    UM.MVector (PrimState m) a ->
    m ()

newtype NatOrd a = NatOrd {forall a. NatOrd a -> a
getNatOrd :: a}
  deriving (NatOrd a -> NatOrd a -> Bool
(NatOrd a -> NatOrd a -> Bool)
-> (NatOrd a -> NatOrd a -> Bool) -> Eq (NatOrd a)
forall a. Eq a => NatOrd a -> NatOrd a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => NatOrd a -> NatOrd a -> Bool
== :: NatOrd a -> NatOrd a -> Bool
$c/= :: forall a. Eq a => NatOrd a -> NatOrd a -> Bool
/= :: NatOrd a -> NatOrd a -> Bool
Eq, Eq (NatOrd a)
Eq (NatOrd a) =>
(NatOrd a -> NatOrd a -> Ordering)
-> (NatOrd a -> NatOrd a -> Bool)
-> (NatOrd a -> NatOrd a -> Bool)
-> (NatOrd a -> NatOrd a -> Bool)
-> (NatOrd a -> NatOrd a -> Bool)
-> (NatOrd a -> NatOrd a -> NatOrd a)
-> (NatOrd a -> NatOrd a -> NatOrd a)
-> Ord (NatOrd a)
NatOrd a -> NatOrd a -> Bool
NatOrd a -> NatOrd a -> Ordering
NatOrd a -> NatOrd a -> NatOrd a
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (NatOrd a)
forall a. Ord a => NatOrd a -> NatOrd a -> Bool
forall a. Ord a => NatOrd a -> NatOrd a -> Ordering
forall a. Ord a => NatOrd a -> NatOrd a -> NatOrd a
$ccompare :: forall a. Ord a => NatOrd a -> NatOrd a -> Ordering
compare :: NatOrd a -> NatOrd a -> Ordering
$c< :: forall a. Ord a => NatOrd a -> NatOrd a -> Bool
< :: NatOrd a -> NatOrd a -> Bool
$c<= :: forall a. Ord a => NatOrd a -> NatOrd a -> Bool
<= :: NatOrd a -> NatOrd a -> Bool
$c> :: forall a. Ord a => NatOrd a -> NatOrd a -> Bool
> :: NatOrd a -> NatOrd a -> Bool
$c>= :: forall a. Ord a => NatOrd a -> NatOrd a -> Bool
>= :: NatOrd a -> NatOrd a -> Bool
$cmax :: forall a. Ord a => NatOrd a -> NatOrd a -> NatOrd a
max :: NatOrd a -> NatOrd a -> NatOrd a
$cmin :: forall a. Ord a => NatOrd a -> NatOrd a -> NatOrd a
min :: NatOrd a -> NatOrd a -> NatOrd a
Ord, Int -> NatOrd a -> ShowS
[NatOrd a] -> ShowS
NatOrd a -> String
(Int -> NatOrd a -> ShowS)
-> (NatOrd a -> String) -> ([NatOrd a] -> ShowS) -> Show (NatOrd a)
forall a. Show a => Int -> NatOrd a -> ShowS
forall a. Show a => [NatOrd a] -> ShowS
forall a. Show a => NatOrd a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Int -> NatOrd a -> ShowS
showsPrec :: Int -> NatOrd a -> ShowS
$cshow :: forall a. Show a => NatOrd a -> String
show :: NatOrd a -> String
$cshowList :: forall a. Show a => [NatOrd a] -> ShowS
showList :: [NatOrd a] -> ShowS
Show)

instance (Integral a, Ord a) => Poset (NatOrd a) where
  .<. :: NatOrd a -> NatOrd a -> Bool
(.<.) = NatOrd a -> NatOrd a -> Bool
forall a. Ord a => a -> a -> Bool
(<=)
  {-# INLINE (.<.) #-}
  moebius :: forall i. Integral i => NatOrd a -> NatOrd a -> i
moebius (NatOrd a
x) (NatOrd a
y)
    | a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
y = i
1
    | a
x a -> a -> a
forall a. Num a => a -> a -> a
+ a
1 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
y = -i
1
    | Bool
otherwise = i
0

instance (Ord a) => Lattice (NatOrd a) where
  /\ :: NatOrd a -> NatOrd a -> NatOrd a
(/\) = (a -> a -> a) -> NatOrd a -> NatOrd a -> NatOrd a
forall a b. Coercible a b => a -> b
coerce (forall a. Ord a => a -> a -> a
min @a)
  {-# INLINE (/\) #-}
  \/ :: NatOrd a -> NatOrd a -> NatOrd a
(\/) = (a -> a -> a) -> NatOrd a -> NatOrd a -> NatOrd a
forall a b. Coercible a b => a -> b
coerce (forall a. Ord a => a -> a -> a
max @a)
  {-# INLINE (\/) #-}

newtype DivOrd a = DivOrd {forall a. DivOrd a -> a
getDivOrd :: a}
  deriving (DivOrd a -> DivOrd a -> Bool
(DivOrd a -> DivOrd a -> Bool)
-> (DivOrd a -> DivOrd a -> Bool) -> Eq (DivOrd a)
forall a. Eq a => DivOrd a -> DivOrd a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => DivOrd a -> DivOrd a -> Bool
== :: DivOrd a -> DivOrd a -> Bool
$c/= :: forall a. Eq a => DivOrd a -> DivOrd a -> Bool
/= :: DivOrd a -> DivOrd a -> Bool
Eq, Int -> DivOrd a -> ShowS
[DivOrd a] -> ShowS
DivOrd a -> String
(Int -> DivOrd a -> ShowS)
-> (DivOrd a -> String) -> ([DivOrd a] -> ShowS) -> Show (DivOrd a)
forall a. Show a => Int -> DivOrd a -> ShowS
forall a. Show a => [DivOrd a] -> ShowS
forall a. Show a => DivOrd a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Int -> DivOrd a -> ShowS
showsPrec :: Int -> DivOrd a -> ShowS
$cshow :: forall a. Show a => DivOrd a -> String
show :: DivOrd a -> String
$cshowList :: forall a. Show a => [DivOrd a] -> ShowS
showList :: [DivOrd a] -> ShowS
Show)

instance (Integral a) => Poset (DivOrd a) where
  .<. :: DivOrd a -> DivOrd a -> Bool
(.<.) (DivOrd a
x) (DivOrd a
y) = a -> a -> a
forall a. Integral a => a -> a -> a
rem a
y a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
0
  {-# INLINE (.<.) #-}
  moebius :: forall i. Integral i => DivOrd a -> DivOrd a -> i
moebius (DivOrd a
x) (DivOrd a
y)
    | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ a -> DivOrd a
forall a. a -> DivOrd a
DivOrd a
x DivOrd a -> DivOrd a -> Bool
forall a. Poset a => a -> a -> Bool
.<. a -> DivOrd a
forall a. a -> DivOrd a
DivOrd a
y = i
0
    | Bool
otherwise =
        [i] -> i
forall a. Num a => [a] -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product ([i] -> i) -> ([a] -> [i]) -> [a] -> i
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ([a] -> i) -> [[a]] -> [i]
forall a b. (a -> b) -> [a] -> [b]
map [a] -> i
forall {a} {a}. Num a => [a] -> a
mu ([[a]] -> [i]) -> ([a] -> [[a]]) -> [a] -> [i]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [[a]]
forall a. Eq a => [a] -> [[a]]
L.group ([a] -> i) -> [a] -> i
forall a b. (a -> b) -> a -> b
$
          a -> [a]
forall i. Integral i => i -> [i]
primeFactors (a -> a -> a
forall a. Integral a => a -> a -> a
quot a
y a
x)
    where
      mu :: [a] -> a
mu [a
_] = -a
1
      mu [a]
_ = a
0

instance (Integral a) => Lattice (DivOrd a) where
  /\ :: DivOrd a -> DivOrd a -> DivOrd a
(/\) = (a -> a -> a) -> DivOrd a -> DivOrd a -> DivOrd a
forall a b. Coercible a b => a -> b
coerce (forall a. Integral a => a -> a -> a
gcd @a)
  {-# INLINE (/\) #-}
  \/ :: DivOrd a -> DivOrd a -> DivOrd a
(\/) = (a -> a -> a) -> DivOrd a -> DivOrd a -> DivOrd a
forall a b. Coercible a b => a -> b
coerce (forall a. Integral a => a -> a -> a
lcm @a)
  {-# INLINE (\/) #-}

instance FastZetaMoebius DivOrd where
  type Dim DivOrd = U.Vector Int
  fastZeta :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
(Int -> DivOrd Int)
-> Dim DivOrd -> MVector (PrimState m) a -> m ()
fastZeta Int -> DivOrd Int
_ Dim DivOrd
primes MVector (PrimState m) a
g = do
    let n :: Int
n = MVector (PrimState m) a -> Int
forall a s. Unbox a => MVector s a -> Int
UM.length MVector (PrimState m) a
g
    Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
      g0 <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.read MVector (PrimState m) a
g Int
0
      U.forM_ primes $ \Int
p ->
        Int -> (Int -> m ()) -> m ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rev (Int -> Int -> Int
forall a. Integral a => a -> a -> a
quot (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
i -> do
          c <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
g (Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i)
          UM.unsafeModify g (+ c) i
      UM.write g 0 g0
  {-# INLINE fastZeta #-}

  fastMoebius :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
(Int -> DivOrd Int)
-> Dim DivOrd -> MVector (PrimState m) a -> m ()
fastMoebius Int -> DivOrd Int
_ Dim DivOrd
primes MVector (PrimState m) a
f = do
    let n :: Int
n = MVector (PrimState m) a -> Int
forall a s. Unbox a => MVector s a -> Int
UM.length MVector (PrimState m) a
f
    Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
      f0 <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.read MVector (PrimState m) a
f Int
0
      U.forM_ primes $ \Int
p ->
        Int -> (Int -> m ()) -> m ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep (Int -> Int -> Int
forall a. Integral a => a -> a -> a
quot (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
i -> do
          c <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
f (Int
p Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i)
          UM.unsafeModify f (subtract c) i
      UM.write f 0 f0
  {-# INLINE fastMoebius #-}

newtype SetOrd a = SetOrd {forall a. SetOrd a -> a
getSetOrd :: a}
  deriving (SetOrd a -> SetOrd a -> Bool
(SetOrd a -> SetOrd a -> Bool)
-> (SetOrd a -> SetOrd a -> Bool) -> Eq (SetOrd a)
forall a. Eq a => SetOrd a -> SetOrd a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => SetOrd a -> SetOrd a -> Bool
== :: SetOrd a -> SetOrd a -> Bool
$c/= :: forall a. Eq a => SetOrd a -> SetOrd a -> Bool
/= :: SetOrd a -> SetOrd a -> Bool
Eq, Int -> SetOrd a -> ShowS
[SetOrd a] -> ShowS
SetOrd a -> String
(Int -> SetOrd a -> ShowS)
-> (SetOrd a -> String) -> ([SetOrd a] -> ShowS) -> Show (SetOrd a)
forall a. Show a => Int -> SetOrd a -> ShowS
forall a. Show a => [SetOrd a] -> ShowS
forall a. Show a => SetOrd a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Int -> SetOrd a -> ShowS
showsPrec :: Int -> SetOrd a -> ShowS
$cshow :: forall a. Show a => SetOrd a -> String
show :: SetOrd a -> String
$cshowList :: forall a. Show a => [SetOrd a] -> ShowS
showList :: [SetOrd a] -> ShowS
Show)

instance (Bits a) => Poset (SetOrd a) where
  .<. :: SetOrd a -> SetOrd a -> Bool
(.<.) (SetOrd a
x) (SetOrd a
y) = a
x a -> a -> a
forall a. Bits a => a -> a -> a
.&. a
y a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
x
  {-# INLINE (.<.) #-}
  moebius :: forall i. Integral i => SetOrd a -> SetOrd a -> i
moebius (SetOrd a
x) (SetOrd a
y)
    | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ a -> SetOrd a
forall a. a -> SetOrd a
SetOrd a
x SetOrd a -> SetOrd a -> Bool
forall a. Poset a => a -> a -> Bool
.<. a -> SetOrd a
forall a. a -> SetOrd a
SetOrd a
y = i
0
    | Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit (a -> Int
forall a. Bits a => a -> Int
popCount (a -> Int) -> a -> Int
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Bits a => a -> a
complement a
x a -> a -> a
forall a. Bits a => a -> a -> a
.&. a
y) Int
0 = -i
1
    | Bool
otherwise = i
1

instance (Bits a) => Lattice (SetOrd a) where
  /\ :: SetOrd a -> SetOrd a -> SetOrd a
(/\) = (a -> a -> a) -> SetOrd a -> SetOrd a -> SetOrd a
forall a b. Coercible a b => a -> b
coerce (forall a. Bits a => a -> a -> a
(.&.) @a)
  {-# INLINE (/\) #-}
  \/ :: SetOrd a -> SetOrd a -> SetOrd a
(\/) = (a -> a -> a) -> SetOrd a -> SetOrd a -> SetOrd a
forall a b. Coercible a b => a -> b
coerce (forall a. Bits a => a -> a -> a
(.|.) @a)
  {-# INLINE (\/) #-}

instance FastZetaMoebius SetOrd where
  type Dim SetOrd = Int
  fastZeta :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
(Int -> SetOrd Int)
-> Dim SetOrd -> MVector (PrimState m) a -> m ()
fastZeta Int -> SetOrd Int
_ Dim SetOrd
n MVector (PrimState m) a
g = do
    Int -> (Int -> m ()) -> m ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep Int
Dim SetOrd
n ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
i -> do
      Int -> (Int -> m ()) -> m ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftL Int
1 Int
Dim SetOrd
n) ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
j -> do
        Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit Int
j Int
i) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
          c <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
g (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
setBit Int
j Int
i)
          UM.unsafeModify g (+ c) j
  {-# INLINE fastZeta #-}
  fastMoebius :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
(Int -> SetOrd Int)
-> Dim SetOrd -> MVector (PrimState m) a -> m ()
fastMoebius Int -> SetOrd Int
_ Dim SetOrd
n MVector (PrimState m) a
f = do
    Int -> (Int -> m ()) -> m ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep Int
Dim SetOrd
n ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
i -> do
      Int -> (Int -> m ()) -> m ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftL Int
1 Int
Dim SetOrd
n) ((Int -> m ()) -> m ()) -> (Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int
j -> do
        Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit Int
j Int
i) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
          c <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
f (Int -> Int -> Int
forall a. Bits a => a -> Int -> a
setBit Int
j Int
i)
          UM.unsafeModify f (subtract c) j
  {-# INLINE fastMoebius #-}