{-# LANGUAGE LambdaCase #-} module Data.Graph.Tree.DFS where import Control.Monad import Data.Function import qualified Data.Vector.Unboxed as U import qualified Data.Vector.Unboxed.Mutable as UM import Data.Buffer import Data.Graph.Sparse shortestPath :: (U.Unbox w, Num w) => SparseGraph w -> Vertex -> U.Vector w shortestPath :: forall w. (Unbox w, Num w) => SparseGraph w -> Vertex -> Vector w shortestPath SparseGraph w gr Vertex root = (forall s. ST s (MVector s w)) -> Vector w forall a. Unbox a => (forall s. ST s (MVector s a)) -> Vector a U.create ((forall s. ST s (MVector s w)) -> Vector w) -> (forall s. ST s (MVector s w)) -> Vector w forall a b. (a -> b) -> a -> b $ do let n :: Vertex n = SparseGraph w -> Vertex forall w. SparseGraph w -> Vertex numVerticesSG SparseGraph w gr dist <- Vertex -> ST s (MVector (PrimState (ST s)) w) forall (m :: * -> *) a. (PrimMonad m, Unbox a) => Vertex -> m (MVector (PrimState m) a) UM.unsafeNew Vertex n UM.unsafeWrite dist root 0 stack <- newBufferAsStack n parent <- UM.unsafeNew n U.forM_ (gr `iadjW` root) $ \(Vertex ei, Vertex v, w d) -> do Vertex -> Buffer (PrimState (ST s)) Vertex -> ST s () forall a (m :: * -> *). (Unbox a, PrimMonad m) => a -> Buffer (PrimState m) a -> m () pushBack Vertex ei Buffer s Vertex Buffer (PrimState (ST s)) Vertex stack MVector (PrimState (ST s)) Vertex -> Vertex -> Vertex -> ST s () forall (m :: * -> *) a. (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Vertex -> a -> m () UM.unsafeWrite MVector s Vertex MVector (PrimState (ST s)) Vertex parent Vertex v Vertex root MVector (PrimState (ST s)) w -> Vertex -> w -> ST s () forall (m :: * -> *) a. (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Vertex -> a -> m () UM.unsafeWrite MVector s w MVector (PrimState (ST s)) w dist Vertex v w d fix $ \ST s () loop -> Buffer (PrimState (ST s)) Vertex -> ST s (Maybe Vertex) forall a (m :: * -> *). (Unbox a, PrimMonad m) => Buffer (PrimState m) a -> m (Maybe a) popBack Buffer s Vertex Buffer (PrimState (ST s)) Vertex stack ST s (Maybe Vertex) -> (Maybe Vertex -> ST s ()) -> ST s () forall a b. ST s a -> (a -> ST s b) -> ST s b forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \case Just Vertex ei -> do let v :: Vertex v = SparseGraph w -> Vector Vertex forall w. SparseGraph w -> Vector Vertex adjacentSG SparseGraph w gr Vector Vertex -> Vertex -> Vertex forall a. Unbox a => Vector a -> Vertex -> a `U.unsafeIndex` Vertex ei pv <- MVector (PrimState (ST s)) Vertex -> Vertex -> ST s Vertex forall (m :: * -> *) a. (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Vertex -> m a UM.unsafeRead MVector s Vertex MVector (PrimState (ST s)) Vertex parent Vertex v dv <- UM.unsafeRead dist v U.forM_ (gr `iadjW` v) $ \(Vertex nei, Vertex nv, w d) -> do Bool -> ST s () -> ST s () forall (f :: * -> *). Applicative f => Bool -> f () -> f () when (Vertex pv Vertex -> Vertex -> Bool forall a. Eq a => a -> a -> Bool /= Vertex nv) (ST s () -> ST s ()) -> ST s () -> ST s () forall a b. (a -> b) -> a -> b $ do Vertex -> Buffer (PrimState (ST s)) Vertex -> ST s () forall a (m :: * -> *). (Unbox a, PrimMonad m) => a -> Buffer (PrimState m) a -> m () pushBack Vertex nei Buffer s Vertex Buffer (PrimState (ST s)) Vertex stack MVector (PrimState (ST s)) Vertex -> Vertex -> Vertex -> ST s () forall (m :: * -> *) a. (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Vertex -> a -> m () UM.unsafeWrite MVector s Vertex MVector (PrimState (ST s)) Vertex parent Vertex nv Vertex v MVector (PrimState (ST s)) w -> Vertex -> w -> ST s () forall (m :: * -> *) a. (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Vertex -> a -> m () UM.unsafeWrite MVector s w MVector (PrimState (ST s)) w dist Vertex nv (w -> ST s ()) -> w -> ST s () forall a b. (a -> b) -> a -> b $ w dv w -> w -> w forall a. Num a => a -> a -> a + w d loop Maybe Vertex Nothing -> () -> ST s () forall a. a -> ST s a forall (m :: * -> *) a. Monad m => a -> m a return () return dist diameter :: (U.Unbox w, Ord w, Num w) => SparseGraph w -> w diameter :: forall w. (Unbox w, Ord w, Num w) => SparseGraph w -> w diameter SparseGraph w tree = Vector w -> w forall a. (Unbox a, Ord a) => Vector a -> a U.maximum (Vector w -> w) -> (Vector w -> Vector w) -> Vector w -> w forall b c a. (b -> c) -> (a -> b) -> a -> c . SparseGraph w -> Vertex -> Vector w forall w. (Unbox w, Num w) => SparseGraph w -> Vertex -> Vector w shortestPath SparseGraph w tree (Vertex -> Vector w) -> (Vector w -> Vertex) -> Vector w -> Vector w forall b c a. (b -> c) -> (a -> b) -> a -> c . Vector w -> Vertex forall a. (Unbox a, Ord a) => Vector a -> Vertex U.maxIndex (Vector w -> w) -> Vector w -> w forall a b. (a -> b) -> a -> b $ SparseGraph w -> Vertex -> Vector w forall w. (Unbox w, Num w) => SparseGraph w -> Vertex -> Vector w shortestPath SparseGraph w tree Vertex 0 height :: (U.Unbox w, Ord w, Num w) => SparseGraph w -> U.Vector w height :: forall w. (Unbox w, Ord w, Num w) => SparseGraph w -> Vector w height SparseGraph w tree = (w -> w -> w) -> Vector w -> Vector w -> Vector w forall a b c. (Unbox a, Unbox b, Unbox c) => (a -> b -> c) -> Vector a -> Vector b -> Vector c U.zipWith w -> w -> w forall a. Ord a => a -> a -> a max Vector w fromS Vector w fromT where s :: Vertex s = Vector w -> Vertex forall a. (Unbox a, Ord a) => Vector a -> Vertex U.maxIndex (Vector w -> Vertex) -> Vector w -> Vertex forall a b. (a -> b) -> a -> b $ SparseGraph w -> Vertex -> Vector w forall w. (Unbox w, Num w) => SparseGraph w -> Vertex -> Vector w shortestPath SparseGraph w tree Vertex 0 fromS :: Vector w fromS = SparseGraph w -> Vertex -> Vector w forall w. (Unbox w, Num w) => SparseGraph w -> Vertex -> Vector w shortestPath SparseGraph w tree Vertex s t :: Vertex t = Vector w -> Vertex forall a. (Unbox a, Ord a) => Vector a -> Vertex U.maxIndex Vector w fromS fromT :: Vector w fromT = SparseGraph w -> Vertex -> Vector w forall w. (Unbox w, Num w) => SparseGraph w -> Vertex -> Vector w shortestPath SparseGraph w tree Vertex t