module Data.Graph.BellmanFord where
import Control.Monad
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Unboxed.Mutable as UM
import My.Prelude (rep)
type Vertex = Int
bellmanFord :: Int -> Vertex -> U.Vector (Vertex, Vertex, Int) -> U.Vector Int
bellmanFord :: Int -> Int -> Vector (Int, Int, Int) -> Vector Int
bellmanFord Int
n Int
root Vector (Int, Int, Int)
edges = (forall s. ST s (MVector s Int)) -> Vector Int
forall a. Unbox a => (forall s. ST s (MVector s a)) -> Vector a
U.create ((forall s. ST s (MVector s Int)) -> Vector Int)
-> (forall s. ST s (MVector s Int)) -> Vector Int
forall a b. (a -> b) -> a -> b
$ do
MVector s Int
dist <- Int -> Int -> ST s (MVector (PrimState (ST s)) Int)
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> a -> m (MVector (PrimState m) a)
UM.replicate Int
n Int
forall a. Bounded a => a
maxBound
MVector (PrimState (ST s)) Int -> Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m ()
UM.write MVector s Int
MVector (PrimState (ST s)) Int
dist Int
root Int
0
Int -> (Int -> ST s ()) -> ST s ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) ((Int -> ST s ()) -> ST s ()) -> (Int -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \Int
_ -> do
Vector (Int, Int, Int) -> ((Int, Int, Int) -> ST s ()) -> ST s ()
forall (m :: * -> *) a b.
(Monad m, Unbox a) =>
Vector a -> (a -> m b) -> m ()
U.forM_ Vector (Int, Int, Int)
edges (((Int, Int, Int) -> ST s ()) -> ST s ())
-> ((Int, Int, Int) -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \(Int
src, Int
dst, Int
cost) -> do
Int
dv <- MVector (PrimState (ST s)) Int -> Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector s Int
MVector (PrimState (ST s)) Int
dist Int
src
Int
du <- MVector (PrimState (ST s)) Int -> Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector s Int
MVector (PrimState (ST s)) Int
dist Int
dst
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
dv Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
cost Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
du Bool -> Bool -> Bool
&& Int
dv Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
forall a. Bounded a => a
maxBound) (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
MVector (PrimState (ST s)) Int -> Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m ()
UM.unsafeWrite MVector s Int
MVector (PrimState (ST s)) Int
dist Int
dst (Int -> ST s ()) -> Int -> ST s ()
forall a b. (a -> b) -> a -> b
$ Int
dv Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
cost
Vector (Int, Int, Int) -> ((Int, Int, Int) -> ST s ()) -> ST s ()
forall (m :: * -> *) a b.
(Monad m, Unbox a) =>
Vector a -> (a -> m b) -> m ()
U.forM_ Vector (Int, Int, Int)
edges (((Int, Int, Int) -> ST s ()) -> ST s ())
-> ((Int, Int, Int) -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \(Int
src, Int
dst, Int
cost) -> do
Int
dv <- MVector (PrimState (ST s)) Int -> Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector s Int
MVector (PrimState (ST s)) Int
dist Int
src
Int
du <- MVector (PrimState (ST s)) Int -> Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector s Int
MVector (PrimState (ST s)) Int
dist Int
dst
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
dv Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
cost Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
du Bool -> Bool -> Bool
&& Int
dv Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
forall a. Bounded a => a
maxBound) (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
MVector (PrimState (ST s)) Int -> Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m ()
UM.unsafeWrite MVector s Int
MVector (PrimState (ST s)) Int
dist Int
dst Int
forall a. Bounded a => a
minBound
Int -> (Int -> ST s ()) -> ST s ()
forall (m :: * -> *). Monad m => Int -> (Int -> m ()) -> m ()
rep (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) ((Int -> ST s ()) -> ST s ()) -> (Int -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \Int
_ -> do
Vector (Int, Int, Int) -> ((Int, Int, Int) -> ST s ()) -> ST s ()
forall (m :: * -> *) a b.
(Monad m, Unbox a) =>
Vector a -> (a -> m b) -> m ()
U.forM_ Vector (Int, Int, Int)
edges (((Int, Int, Int) -> ST s ()) -> ST s ())
-> ((Int, Int, Int) -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \(Int
src, Int
dst, Int
_) -> do
Int
dv <- MVector (PrimState (ST s)) Int -> Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector s Int
MVector (PrimState (ST s)) Int
dist Int
src
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
dv Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
forall a. Bounded a => a
minBound) (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
MVector (PrimState (ST s)) Int -> Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> a -> m ()
UM.unsafeWrite MVector s Int
MVector (PrimState (ST s)) Int
dist Int
dst Int
forall a. Bounded a => a
minBound
MVector s Int -> ST s (MVector s Int)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return MVector s Int
dist