module Data.FenwickTree where
import Control.Monad
import Control.Monad.Primitive
import Data.Bits
import Data.Coerce
import Data.Function
import Data.Monoid
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Unboxed.Mutable as UM
newtype FenwickTree s a = FenwickTree {forall s a. FenwickTree s a -> MVector s a
getFenwickTree :: UM.MVector s a}
newFenwickTree ::
(U.Unbox a, Monoid a, PrimMonad m) =>
Int ->
m (FenwickTree (PrimState m) a)
newFenwickTree :: forall a (m :: * -> *).
(Unbox a, Monoid a, PrimMonad m) =>
Int -> m (FenwickTree (PrimState m) a)
newFenwickTree Int
n = MVector (PrimState m) a -> FenwickTree (PrimState m) a
forall s a. MVector s a -> FenwickTree s a
FenwickTree (MVector (PrimState m) a -> FenwickTree (PrimState m) a)
-> m (MVector (PrimState m) a) -> m (FenwickTree (PrimState m) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> m (MVector (PrimState m) a)
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> a -> m (MVector (PrimState m) a)
UM.replicate (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) a
forall a. Monoid a => a
mempty
{-# INLINE newFenwickTree #-}
buildFenwickTree ::
(U.Unbox a, Monoid a, PrimMonad m) =>
U.Vector a ->
m (FenwickTree (PrimState m) a)
buildFenwickTree :: forall a (m :: * -> *).
(Unbox a, Monoid a, PrimMonad m) =>
Vector a -> m (FenwickTree (PrimState m) a)
buildFenwickTree Vector a
vec = do
let n :: Int
n = Vector a -> Int
forall a. Unbox a => Vector a -> Int
U.length Vector a
vec
ft <- Int -> m (MVector (PrimState m) a)
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
Int -> m (MVector (PrimState m) a)
UM.unsafeNew (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
UM.write ft 0 mempty
U.unsafeCopy (UM.tail ft) vec
flip fix 1 $ \Int -> m ()
loop !Int
i -> Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
n) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
let j :: Int
j = Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int
i Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
i))
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
n) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
fti <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
ft Int
i
UM.unsafeModify ft (<> fti) j
Int -> m ()
loop (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
return $ FenwickTree ft
{-# INLINE buildFenwickTree #-}
mappendTo ::
(PrimMonad m, U.Unbox a, Monoid a) =>
FenwickTree (PrimState m) a ->
Int ->
m a
mappendTo :: forall (m :: * -> *) a.
(PrimMonad m, Unbox a, Monoid a) =>
FenwickTree (PrimState m) a -> Int -> m a
mappendTo (FenwickTree MVector (PrimState m) a
ft) = a -> Int -> m a
forall {m :: * -> *}.
(PrimState m ~ PrimState m, PrimMonad m) =>
a -> Int -> m a
go a
forall a. Monoid a => a
mempty
where
go :: a -> Int -> m a
go !a
acc !Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = do
xi <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
MVector (PrimState m) a
ft Int
i
go (acc <> xi) (i - (i .&. (-i)))
| Bool
otherwise = a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
acc
{-# INLINE mappendTo #-}
mappendAt ::
(U.Unbox a, Semigroup a, PrimMonad m) =>
FenwickTree (PrimState m) a ->
Int ->
a ->
m ()
mappendAt :: forall a (m :: * -> *).
(Unbox a, Semigroup a, PrimMonad m) =>
FenwickTree (PrimState m) a -> Int -> a -> m ()
mappendAt (FenwickTree MVector (PrimState m) a
ft) Int
k a
v = (((Int -> m ()) -> Int -> m ()) -> Int -> m ())
-> Int -> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Int -> m ()) -> Int -> m ()) -> Int -> m ()
forall a. (a -> a) -> a
fix (Int
k Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (((Int -> m ()) -> Int -> m ()) -> m ())
-> ((Int -> m ()) -> Int -> m ()) -> m ()
forall a b. (a -> b) -> a -> b
$ \Int -> m ()
loop !Int
i -> do
Bool -> m () -> m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n) (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ do
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> (a -> a) -> Int -> m ()
UM.unsafeModify MVector (PrimState m) a
ft (a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
v) Int
i
Int -> m ()
loop (Int -> m ()) -> Int -> m ()
forall a b. (a -> b) -> a -> b
$ Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ (Int
i Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. (-Int
i))
where
!n :: Int
n = MVector (PrimState m) a -> Int
forall a s. Unbox a => MVector s a -> Int
UM.length MVector (PrimState m) a
ft
{-# INLINE mappendAt #-}
type SumFenwickTree s a = FenwickTree s (Sum a)
newSumFenwickTree ::
(Num a, U.Unbox a, PrimMonad m) =>
Int ->
m (SumFenwickTree (PrimState m) a)
newSumFenwickTree :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
Int -> m (SumFenwickTree (PrimState m) a)
newSumFenwickTree = Int -> m (FenwickTree (PrimState m) (Sum a))
forall a (m :: * -> *).
(Unbox a, Monoid a, PrimMonad m) =>
Int -> m (FenwickTree (PrimState m) a)
newFenwickTree
{-# INLINE newSumFenwickTree #-}
buildSumFenwickTree ::
(Num a, U.Unbox a, PrimMonad m) =>
U.Vector a ->
m (SumFenwickTree (PrimState m) a)
buildSumFenwickTree :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
Vector a -> m (SumFenwickTree (PrimState m) a)
buildSumFenwickTree = Vector (Sum a) -> m (SumFenwickTree (PrimState m) a)
forall a (m :: * -> *).
(Unbox a, Monoid a, PrimMonad m) =>
Vector a -> m (FenwickTree (PrimState m) a)
buildFenwickTree (Vector (Sum a) -> m (SumFenwickTree (PrimState m) a))
-> (Vector a -> Vector (Sum a))
-> Vector a
-> m (SumFenwickTree (PrimState m) a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Sum a) -> Vector a -> Vector (Sum a)
forall a b. (Unbox a, Unbox b) => (a -> b) -> Vector a -> Vector b
U.map a -> Sum a
forall a b. Coercible a b => a -> b
coerce
{-# INLINE buildSumFenwickTree #-}
sumTo ::
(Num a, U.Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a ->
Int ->
m a
sumTo :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> m a
sumTo SumFenwickTree (PrimState m) a
ft Int
k = Sum a -> a
forall a b. Coercible a b => a -> b
coerce (Sum a -> a) -> m (Sum a) -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SumFenwickTree (PrimState m) a -> Int -> m (Sum a)
forall (m :: * -> *) a.
(PrimMonad m, Unbox a, Monoid a) =>
FenwickTree (PrimState m) a -> Int -> m a
mappendTo SumFenwickTree (PrimState m) a
ft Int
k
{-# INLINE sumTo #-}
sumFromTo ::
(Num a, U.Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a ->
Int ->
Int ->
m a
sumFromTo :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> Int -> m a
sumFromTo SumFenwickTree (PrimState m) a
ft Int
l Int
r = (-) (a -> a -> a) -> m a -> m (a -> a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> SumFenwickTree (PrimState m) a -> Int -> m a
forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> m a
sumTo SumFenwickTree (PrimState m) a
ft Int
r m (a -> a) -> m a -> m a
forall a b. m (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> SumFenwickTree (PrimState m) a -> Int -> m a
forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> m a
sumTo SumFenwickTree (PrimState m) a
ft Int
l
{-# INLINE sumFromTo #-}
readSumFenwickTree ::
(Num a, U.Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a ->
Int ->
m a
readSumFenwickTree :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> m a
readSumFenwickTree SumFenwickTree (PrimState m) a
ft Int
i = SumFenwickTree (PrimState m) a -> Int -> Int -> m a
forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> Int -> m a
sumFromTo SumFenwickTree (PrimState m) a
ft Int
i (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
{-# INLINE readSumFenwickTree #-}
writeSumFenwickTree ::
(Num a, U.Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a ->
Int ->
a ->
m ()
writeSumFenwickTree :: forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> a -> m ()
writeSumFenwickTree SumFenwickTree (PrimState m) a
ft Int
i a
x = SumFenwickTree (PrimState m) a -> Int -> m a
forall a (m :: * -> *).
(Num a, Unbox a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> m a
readSumFenwickTree SumFenwickTree (PrimState m) a
ft Int
i m a -> (a -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= SumFenwickTree (PrimState m) a -> Int -> a -> m ()
forall a (m :: * -> *).
(Unbox a, Num a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> a -> m ()
addAt SumFenwickTree (PrimState m) a
ft Int
i (a -> m ()) -> (a -> a) -> a -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a
x a -> a -> a
forall a. Num a => a -> a -> a
-)
{-# INLINE writeSumFenwickTree #-}
addAt ::
(U.Unbox a, Num a, PrimMonad m) =>
SumFenwickTree (PrimState m) a ->
Int ->
a ->
m ()
addAt :: forall a (m :: * -> *).
(Unbox a, Num a, PrimMonad m) =>
SumFenwickTree (PrimState m) a -> Int -> a -> m ()
addAt SumFenwickTree (PrimState m) a
ft Int
k a
x = SumFenwickTree (PrimState m) a -> Int -> Sum a -> m ()
forall a (m :: * -> *).
(Unbox a, Semigroup a, PrimMonad m) =>
FenwickTree (PrimState m) a -> Int -> a -> m ()
mappendAt SumFenwickTree (PrimState m) a
ft Int
k (a -> Sum a
forall a b. Coercible a b => a -> b
coerce a
x)
{-# INLINE addAt #-}
findMaxIndexLT ::
(U.Unbox a, Num a, Ord a, PrimMonad m) =>
FenwickTree (PrimState m) a ->
a ->
m Int
findMaxIndexLT :: forall a (m :: * -> *).
(Unbox a, Num a, Ord a, PrimMonad m) =>
FenwickTree (PrimState m) a -> a -> m Int
findMaxIndexLT (FenwickTree MVector (PrimState m) a
ft) a
w0
| a
w0 a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
0 = Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
0
| Bool
otherwise = a -> Int -> Int -> m Int
forall {m :: * -> *}.
(PrimState m ~ PrimState m, PrimMonad m) =>
a -> Int -> Int -> m Int
go a
w0 Int
highestOneBit Int
0
where
n :: Int
n = MVector (PrimState m) a -> Int
forall a s. Unbox a => MVector s a -> Int
UM.length MVector (PrimState m) a
ft
highestOneBit :: Int
highestOneBit = (Int -> Bool) -> (Int -> Int) -> Int -> Int
forall a. (a -> Bool) -> (a -> a) -> a -> a
until (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
n) (Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
2) Int
1 Int -> Int -> Int
forall a. Integral a => a -> a -> a
`quot` Int
2
go :: a -> Int -> Int -> m Int
go !a
w !Int
step !Int
i
| Int
step Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Int -> m Int
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Int
i
| Bool
otherwise = do
if Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
step Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
then do
u <- MVector (PrimState m) a -> Int -> m a
forall (m :: * -> *) a.
(PrimMonad m, Unbox a) =>
MVector (PrimState m) a -> Int -> m a
UM.unsafeRead MVector (PrimState m) a
MVector (PrimState m) a
ft (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
step)
if u < w
then go (w - u) (step `unsafeShiftR` 1) (i + step)
else go w (step `unsafeShiftR` 1) i
else a -> Int -> Int -> m Int
go a
w (Int
step Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`unsafeShiftR` Int
1) Int
i
{-# INLINE findMaxIndexLT #-}